Model Simulasi Perhitungan Konversi Daya Mesin Diesel Kapal Konvensional 20 HP ke Mesin Penggerak Motor Listrik BLDC
Abstract
More and more people are aware of the importance of environmental conservation, especially in the maritime sector, so the maritime industry is turning to more environmentally friendly technologies. Diesel marine engines, which have been the standard for years, have major drawbacks, namely high exhaust emissions and dependence on fossil fuels. To support green technology initiatives, ship propulsion systems are now starting to switch to Brushless Direct Current (BLDC) electric engines that are more efficient and environmentally friendly. BLDC electric motors are highly energy efficient, reduce emissions, and are easier to maintain. They work by diverting current to the stator windings, which generates a magnetic field that drives the rotor. In-depth calculation and simulation models are essential for the preparation and execution of this conversion. Develop a calculation and simulation model that can be used to evaluate and optimize the conversion process of a Diesel ship engine to a BLDC electric engine. The converted engine is Marine Shark SM 1110 TT, which has a maximum power of 20 HP and 1500 RPM. This research required a design methodology that collected literature study data and calculations. The calculation results show that to replace the convention ship Diesel engine with a BLDC electric motor, an electric motor power of 15 kW is required, the power efficiency is 5.83 kW to replace a Diesel engine with a power of 20 HP with a power efficiency of 5.25 kW at 1500 RPM. Meanwhile, the effective power generated by the BLDC electric motor is 13.5 kW with a torque value of 86 Nm. The effective power generated by BLDC is 2.57 times greater than the Diesel motor. With the conversion of these calculations BLDC is able to replace conventional Diesel engine power as a propeller driver on the ship.
References
Y. C. Wibowo and S. Riyadi, “Analisa Pembebanan pada Motor Brushless DC(BLDC),” Semin. Nas. Instrumentasi, Kontrol, dan Otomasi, pp. 10–11, 2018.
I. Hasan, L. Hakim, and Denur, “Desain Pengganti Penggerak Motor Bakar Torak (110 CC) pada Sepeda Motor Otomatic dengan Motor Listrik Type Bldc (Brushless DC),” J. Surya Tek., vol. 9, no. 2, pp. 516–524, 2022, doi: 10.37859/jst.v9i2.4382.
D. Akbar and S. Riyadi, “Pengaturan Kecepatan Pada Motor Brushless Dc (Bldc) Menggunakan Pwm (Pulse Width Modulation),” pp. 255–262, 2019, doi: 10.5614/sniko.2018.30.
V. K. Awaar, R. Simhadri, T. Jalla, M. Bagari, S. Aggarapu, and A. Hussien Abbas, “Parameter estimation and analysis of BLDC motor drive for electric vehicles application,” E3S Web Conf., vol. 391, pp. 1–13, 2023, doi: 10.1051/e3sconf/202339101177.
B. Santoso, Jamal, and Sarwoko, “Perbandingan Efisiensi Daya Mesin Kapal Nelayan Tradisonal 3 GT,” J. Rekayasa Mesin, vol. 12, no. 1, pp. 1–6, 2017.
A. Purwanto et al., “Analisis Pengunaan Motor Listrik Sebagai Penggerak Pada Kapal Nelayan 3 GT,” POJOK Ris. Bul. Matric, vol. 13, no. 1, pp. 12–15, 2016.
H. K. Prasetya and E. S. Koenhardono, “Perencanaan Sistem Propulsi Hybrid Untuk Kapal Fast Patrol Boat 60 M,” J. Tek. ITS, vol. 5, no. 2, 2016, doi: 10.12962/j23373539.v5i2.19398.
A. V. Dragos, A. Pesyridis, F. Alshammari, P. Sphicas, and M. Kourmpetis, “Diesel engine waste heat recovery turbine design: geometric and materials effects on ORC turbines,” Front. Mech. Eng., vol. 9, no. November, pp. 1–23, 2023, doi: 10.3389/fmech.2023.1291108.
D. R. Mandasari, B. Sudiarto, L. Amelia, C. Supriyadi, and A. Nandar, “Electric Boat Propulsion with IPM BLDC Motors: Performance and Efficiency Analysis,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 13, no. 2, pp. 84–92, 2024, doi: 10.22146/jnteti.v13i2.10131.
D. A. S. F. Z. M.H. Tullah, “Perancangan Prototipe Bldc Untuk Kit Konversi Skuter Hybrid,” J. Teknol. , vol. 1, no. 1, pp. 1–8, 2023.